Cruciferous Vegetables helpful against prostate cancer

In recently released studies, three phytochemicals derived from cruciferous vegetables(such as broccoli) have shown promise in inhibiting prostate cancer in experimental models.2,3 Because their chemical names are challenging— indole-3-carbinol, 3,3’-diindolylmethane, and phenethyl isothiocyanate—they are better known as I3C, DIM, and PEITC, respectively.
Examples of Cruciferous Vegetables are:

·         Arugula

·         Bok choy

·         Broccoli

·         Brussels sprouts

·         Cabbage

·         Cauliflower

·         Collard greens

·         Horseradish

·         Kale

·         Radishes

·         Rutabaga

·         Turnips

·         Watercress

·         Wasabi

I3C has several different actions that help prevent and inhibit prostate cancer. It helps activate detoxification pathways, prevents cancer cell growth, induces apoptosis, regulates gene expression, protects DNA from damage, and modulates a variety of cell signaling pathways.3-6

DIM has been shown to protect against prostate cancer by inhibiting the phosphorus-transferring enzyme Akt, inhibiting the master DNA-transcription regulator nuclear factor-kappaB (NF-kB)—and blocking the crosstalk between them.7


This is a novel mechanism through which DIM inhibits cell growth and induces apoptosis in prostate cancer cells, but not in non-tumorigenic prostate epithelial cells.The ability of DIM to target aberrant epigenetic changes coupled with its ability to promote the detoxification of carcinogens, make it an effective chemopreventive agent as it is able to target multiple stages of prostate carcinogenesis.1


In a study released in May 2013, PEITC was found to suppress a compound known as PCAF (P300/CBP-associated factor)—which in turn inhibits androgen receptor-regulated transcriptional activity in prostate cancer cells.Daily suggested dosages are 14 milligrams for DIM, and 80-160 milligrams for I3C. An I3C dosage of 200-600 milligrams daily is suggested as an adjuvant for prostate cancer therapy. Dosages for PEITC are not well-established.

  1. Available at: Accessed September 9, 2013.
  1. Beaver LM, Yu TW, Sokolowski EI, Williams DE, Dashwood RH, Ho E. 3,3’-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells. Toxicol Appl Pharmacol. 2012 Sep 15;263(3):345-51.
  2. Yu C, Gong AY, Chen D, Solelo Leon D, Young CY, Chen XM. Phenethyl isothiocyanate inhibits androgen receptor-regulated transcriptional activity in prostate cancer cells through suppressing PCAF. Mol Nutr Food Res. 2013.
  3. Sarkar FH, Li Y. Indole-3-carbinol and prostate cancer. J Nutr. 2004 Dec;134(12 Suppl):3493S-3498S.
  4. Fong AT, Swanson HI, Dashwood RH, Williams DE, Hendricks JD, Bailey GS. Mechanisms of anti-carcinogenesis by indole-3-carbinol. Studies of enzyme induction, eletrophile-scavenging, and inhibition of aflatoxin B1 activation.Biochem Pharmacol. 1990 Jan 1;39(1):19-26.
  5. Chinni SR, Li Y, Upadhyay S, Koppolu PK, Sarkar FH. Indole-3-carbinol (I3C) induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene. 2001 May 24;20(23):2927-36.
  6. Li Y, Chinni SR, Sarkar FH. Selective growth regulatory and pro-apoptotic effects of DIM is mediated by AKT and NF-kappaB pathways in prostate cancer cells. Front Biosci. 2005 Jan 1;10:236-43.